翻訳と辞書 |
Absolutely simple group : ウィキペディア英語版 | Absolutely simple group In mathematics, in the field of group theory, a group is said to be absolutely simple if it has no proper nontrivial serial subgroups.〔.〕 That is, is an absolutely simple group if the only serial subgroups of are (the trivial subgroup), and itself (the whole group). In the finite case, a group is absolutely simple if and only if it is simple. However, in the infinite case, absolutely simple is a stronger property than simple. The property of being strictly simple is somewhere in between. ==See also==
* Ascendant subgroup * Strictly simple group
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Absolutely simple group」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|